Clinical Implications of Asthma Phenotypes

Michael Schatz, MD, MS
Department of Allergy
Definition of Phenotype

• The observable properties of an organism that are produced by the interaction of the genotype (genetic make-up) and the environment

• As applied to asthma, refers to subtypes of asthma, typically with unique triggers or symptoms

• Uncertain whether some asthma phenotypes are actually different diseases or just variations in a single disease

• Asthma phenotypes, although not perfectly defined, have implications for management
Endotype

• A subtype of a condition, which is defined by a distinct functional or pathobiological mechanism

• Two main endotypes in asthma
 • Th2 (eosinophilic)
 • Non-Th2

• A single phenotype may have more than one endotype
 • Non-allergic asthma may be Th2 or Non-Th2

• A single endotype may contribute to more than one phenotype
 • Th2 endotypes contribute to allergic asthma, one type of non-allergic asthma, and AERD

• Endotype identification may further facilitate “personalized medicine”
Asthma Phenotypes

- Allergic
- Non-allergic
- Aspirin Exacerbated Respiratory Disease (AERD)
- Infection-related
- Exercise-induced
- Cough-variant
- Obesity-associated
- Overlap with COPD
Information for each Phenotype

• Distinguishing Features
• Clinical Manifestations
• Targeted Therapy
Allergic Asthma: Question

• What is the ideal approach to identifying the Allergic Asthma phenotype?
 • A. History alone
 • B. Specific IgE alone
 • C. Correlation between history and specific IgE
 • D. None of the above
Allergic Asthma: Answer

• What is the ideal approach to identifying the Allergic Asthma phenotype?
 • A. History alone
 • B. Specific IgE alone
 • C. Correlation between history and specific IgE
 • D. None of the above
Allergic Asthma

• Distinguishing Features
 • Specific IgE against mite, animal dander, cockroach, mold spores, or pollen
 • Ideally, correlation of specific IgE to
 • Seasonal variation
 • Symptoms in response to house dust, animals, mold exposure, or pollen
Allergic Asthma

• Clinical Manifestations
 • Most common phenotype in the general population of patients with asthma
 • Younger onset
 • More common in male patients
 • Associated with allergic rhinitis and atopic dermatitis (eczema)
 • Milder overall than non-allergic asthma, but substantial variability in severity
Allergic Asthma

• Targeted Therapy
 • Allergen avoidance
 • Immunotherapy
 • Omalizumab
House Dust Mite Avoidance

- Wash all bedding, blankets, comforters, mattress pads and sheets in hot water (>120 degree F) at least every two weeks.

- Get water-proof dust covers for the mattress and all pillows. These can be obtained from mail order allergy supply houses.

- Do not humidify your house, and if you live near the beach consider getting a dehumidifier for the bedroom.

- Use dust mask if you need to vacuum and consider vacuum cleaner with HEPA filter.
What Is Allergen Immunotherapy?

Administer increasing doses of allergen to a sensitive individual

Increase tolerance for the particular allergen

Decrease symptoms
Immunotherapy Types

• **Subcutaneous injections**
 • Used for more than 100 years
 • Efficacy well-established
 • Can treat with multiple antigens
 • More inconvenient
 • More allergic reactions

• **Oral (SLIT)**
 • First products approved in 2014
 • May be somewhat less effective than SQ
 • Individual antigens (grass, ragweed, mite)
 • More convenient
 • Fewer allergic reactions
Omalizumab

• Mechanism
 • Antibody against IgE
 • Lowers specific IgE levels

• Use
 • Patients with allergic asthma
 • Uncontrolled by medium dose ICS + LABA and addressing triggers
 • Limited by expense
Non-allergic Asthma: Question

Which of the following is NOT true in patients with Non-allergic Asthma?

- A. Skin tests to common inhalant allergens are negative
- B. Rhinitis is usually not associated
- C. Age of onset is usually older than Allergic Asthma
- D. It is more common in females
Non-allergic Asthma: Answer

Which of the following is NOT true in patients with Non-allergic Asthma?

- A. Skin tests to common inhalant allergens are negative
- **B. Rhinitis is usually not associated**
- C. Age of onset is usually older than Allergic Asthma
- D. It is more common in females
Non-allergic Asthma

• Distinguishing Features
 • NO sensitization (RAST or skin test) to common allergens
 • Dust mite
 • Animal dander
 • Cockroach
 • Mold spores
 • Pollens
 • Tree
 • Grass
 • Weed
Non-allergic Asthma

• Clinical Manifestations
 • Older age of onset
 • More common in female patients
 • Typically more severe than allergic asthma
 • Non-allergic rhinitis may be associated
 • GERD may be associated
 • May be Th2 or non-Th2 endotype
 • May or may not have peripheral eosinophilia (at least ≥ 150 cells/microliter)
 • May or may not have elevated fractional exhaled nitric oxide (FENO)
Fractional Exhaled Nitric Oxide (FENO)

- Exhaled breath measurement available in Allergy and Pulmonary
- Measures nitric oxide that is produced by the human lung
- Elevated levels reflect eosinophilic airway inflammation
- Elevated levels are seen in patients with Th2 endotype of asthma
- Elevated levels suggest likely response to inhaled corticosteroids
Non-allergic Asthma

• Targeted Therapy
 • Treatment of symptomatic GERD
 • Interleukin-5 (IL-5) antagonists for Th2 endotype
 • Macrolides, theophylline, roflumilast for non-Th2 endotype
IL-5 Antagonists

• IL-5 is the major cytokine responsible for the growth, differentiation, recruitment, and activation of eosinophils.

• IL-5 antagonists are monoclonal antibodies that reduce the production and survival of eosinophils by preventing IL-5 from binding to its receptors.

• Three now approved
 • Benralizumab
 • Mepolizumab
 • Reslizumab
Comparison of IL-5 Antagonists

<table>
<thead>
<tr>
<th>Drug</th>
<th>Age</th>
<th>Dose</th>
<th>Route</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benralizumab</td>
<td>≥ 12</td>
<td>30 mg</td>
<td>SQ</td>
<td>Every 4 weeks X 3, then every 8 weeks</td>
</tr>
<tr>
<td>Mepolizumab</td>
<td>≥ 12</td>
<td>100 mg</td>
<td>SQ</td>
<td>Every 4 weeks</td>
</tr>
<tr>
<td>Reslizumab</td>
<td>≥ 18</td>
<td>3 mg/kg</td>
<td>IV</td>
<td>Every 4 weeks</td>
</tr>
</tbody>
</table>
Aspirin-Exacerbated Respiratory Disease (AERD): Question

• Which of the following is true regarding AERD?
 • A. It is often more severe than other phenotypes
 • B. It usually responds poorly to corticosteroids
 • C. Patients often also react to acetaminophen and COX-2 inhibitors
 • D. Aspirin desensitization has not been shown to be effective
Aspirin-Exacerbated Respiratory Disease (AERD): Answer

• Which of the following is true regarding AERD?
 • A. It is often more severe than other phenotypes
 • B. It usually responds poorly to corticosteroids
 • C. Patients often also react to acetaminophen and COX-2 inhibitors
 • D. Aspirin desensitization has not been shown to be effective
Aspirin-Exacerbated Respiratory Disease (AERD)

• Distinguishing Features
 • Increased nasal and/or chest symptoms within 1-3 hours after aspirin or other NSAIDs (COX-1 inhibitors)
 • COX-2 inhibitors are tolerated
 • Suggested by history
 • Ideally confirmed by challenge
Aspirin-Exacerbated Respiratory Disease (AERD)

• Clinical Manifestations
 • Adult onset
 • More common in women
 • Nasal polyps
 • Chronic rhinosinusitis
 • Generally more severe with decreased quality of life and increased exacerbations
 • Responds to corticosteroids but may be oral corticosteroid-dependent
Aspirin-Exacerbated Respiratory Disease (AERD)

• Targeted Therapy
 • Leukotriene modifiers (LTRA, zileuton)
 • Aspirin desensitization
 • Should only be done with facilities and personnel able to treat severe reactions
 • Start with ¼ baby aspirin (20.25 mg)
 • Double dose at 90 minute intervals to 325 mg
 • When patient reacts, treat reaction and then repeat dose until dose is tolerated
 • Most individuals require two days to complete the procedure

• Biologic therapy (Th2 endotype)
 • Omalizumab
 • IL-5 Antagonists
Infection-related Asthma: Question

• Which of the following is true regarding Infection-related Asthma
 • A. It is usually triggered by viral rather than bacterial infections
 • B. It can be complicated by bacterial sinusitis or pneumonia
 • C. It can be treated with an increased dose inhaled-corticosteroids
 • D. All of the above
• Which of the following is true regarding Infection-related Asthma
 • A. It is usually triggered by viral rather than bacterial infections
 • B. It can be complicated by bacterial sinusitis or pneumonia
 • C. It can be treated with an increased dose inhaled-corticosteroids
 • D. All of the above
Infection-related Asthma

• Distinguishing Features
 • Triggered by respiratory infections
 • Usually viral
 • Especially human rhinovirus
 • May be only trigger or one of several
Infection-related Asthma

• Clinical Manifestations
 • Symptoms of viral illness (nasal discharge, nasal obstruction, cough, and sore throat)
 • Increased asthma 1-2 days after symptoms of infection begin
 • Purulent discharge does not reliably differentiate viral from bacterial infection
 • Symptoms of sinusitis (post nasal drip, green mucus, sinus-distribution pain, reduced sense of smell) suggest bacterial infection
 • High index of suspicion for atypical organism and pneumonia
Infection-related Asthma

• Targeted Therapy
 • Begin or increase (at least four-fold) inhaled corticosteroids
 • Oral prednisone for severe exacerbation
 • Antibiotics for suspected sinusitis, atypical organism, or proven pneumonia
Exercise-induced Asthma: Question

• Which of the following is true regarding Exercise-induced Asthma
 • A. It is not usually associated with a change in pulmonary function
 • B. It usually does not respond to albuterol pre-treatment
 • C. It usually starts 5-10 minutes after exercise
 • D. None of the above
Exercise-induced Asthma: Answer

• Which of the following is true regarding Exercise-induced Asthma
 • A. It is not usually associated with a change in pulmonary function
 • B. It usually does not respond to albuterol pre-treatment
 • C. It usually starts 5-10 minutes after exercise
 • D. None of the above
Exercise-induced Asthma

• Distinguishing features
 • Asthma symptoms 5-10 minutes after exercise
 • Diagnosis confirmed by 10 % or more decrease in FEV$_1$ within 30 minutes after exercise in comparison with pre-exercise FEV$_1$
Exercise-induced Asthma

• Clinical features
 • May occur in patients with any phenotype
 • May be the only trigger for some patients
 • May develop in elite athletes with no prior history of asthma
Exercise-induced Asthma

• Targeted therapy
 • Albuterol prior to exercise
 • Optimize chronic therapy is patients with chronic asthma
 • Montelukast prophylaxis may help some patient not adequately controlled by albuterol prophylaxis
Cough-variant Asthma: Question

• Which of the following is not a typical characteristic feature of Cough-variant Asthma?
 • A. Abnormal pulmonary function
 • B. Positive methacholine challenge
 • C. Response to asthma therapy
 • D. Absence of substantial wheezing
Cough-variant Asthma: Answer

- Which of the following is *not* a typical characteristic feature of Cough-variant Asthma?
 - A. Abnormal pulmonary function
 - B. Positive methacholine challenge
 - C. Response to asthma therapy
 - D. Absence of substantial wheezing
Cough-variant Asthma

• Distinguishing Features
 • Cough
 • Absence of substantial wheezing, chest tightness, or dyspnea
 • Bronchial hyper-reactivity and/or eosinophilic airway inflammation
Cough-variant Asthma

• Clinical Manifestations
 • Usually normal PFTs
 • Positive methacholine challenge
 • May or may not exhibit elevated fractional exhaled nitric oxide (FENO)
 • Response to asthma therapy
Methacholine challenge

• Baseline FEV$_1$
• Graded doses of inhaled methacholine followed by repeat FEV$_1$ after each dose
• Positive challenge (documents bronchial hyper-reactivity): 20 % decrease in FEV$_1$ from baseline
• Negative challenge: < 20 % decrease in FEV$_1$ at top dose
Cough-variant Asthma

- Targeted therapy
 - No specific therapy for this variant
 - Usual pharmacotherapy appropriate
 - Response to asthma therapy helps to confirm the diagnosis
Obesity-associated Asthma: Question

• Which of the following is true regarding Obesity-associated Asthma
 • A. It is more common in women
 • B. It is more common in non-allergic people
 • C. It has been shown to improve with weight loss
 • D. All of the above
Obesity-associated Asthma: Answer

- Which of the following is true regarding Obesity-associated Asthma
 - A. It is more common in women
 - B. It is more common in non-allergic people
 - C. It has been shown to improve with weight loss
 - D. All of the above
Obesity-associated Asthma

- Distinguishing Features
 - BMI ≥ 30
 - Overweight or obesity may aggravate asthma of any phenotype
Obesity-associated Asthma

- **Clinical Manifestations**
 - More common in women
 - More common in non-atopic patients
 - May be poorly responsive to conventional therapy
 - GERD may be associated
Obesity-associated Asthma

• Targeted Therapy
 • Weight loss
 • Treatment of symptomatic GERD
Asthma/COPD Overlap Syndrome: Question

- Compared to pure asthma, patients with the Overlap Syndrome have
 - A. Less mucus production
 - B. More exacerbations
 - C. Better response to inhaled corticosteroids
 - D. All of the above
Asthma/COPD Overlap Syndrome: Answer

• Compared to pure asthma, patients with the Overlap Syndrome have
 • A. Less mucus production
 • B. More exacerbations
 • C. Better response to inhaled corticosteroids
 • D. All of the above
Asthma/COPD Overlap Syndrome

• Distinguishing features
 • Smoking history
 • FEV$_1$ < 70% predicted after therapy
Asthma/COPD Overlap Syndrome

- Clinical Manifestations
 - Dyspnea on exertion after therapy
 - More cough and phlegm than pure asthma
 - Increased tendency to exacerbations compared to pure asthma or pure COPD
 - Less responsive to inhaled corticosteroids than pure asthma
Asthma/COPD Overlap Syndrome

- Targeted Therapy
 - Discontinue smoking
 - ICS/LABA combination therapy
 - Tiotropium
 - Consider pulmonary rehabilitation
Defining the Phenotype

• History
 • Age of onset of asthma
 • Rhinitis
 • Allergic or non-allergic
 • Nasal polyps
 • Sinus disease
 • Atopic dermatitis
 • Smoking
 • Past
 • Current
 • GERD
Defining the Phenotype

• Symptoms
 • Dyspnea
 • With other symptoms
 • On exertion after therapy
 • Chest cough
 • With other symptoms
 • Only symptom
 • With prominent mucus production
Defining the Phenotype

• Triggers
 • Seasonal variation
 • Allergens (house dust, animals, mold exposure, pollen)
 • Aspirin or other NSAID
• Infection
 • Only trigger
 • One of several triggers
• Exercise
 • Only trigger
 • One of several triggers
Defining the Phenotype

• Testing
 • BMI
 • Spirometry
 • Allergen-specific IgE
 • Blood tests (RAST)
 • Skin tests
 • Methacholine challenge
 • Peripheral eosinophil count (endotype)
 • FENO (endotype)
Conclusions

• Asthma can be categorized into several phenotypes (and two main endotypes)
• Asthma phenotypes have distinguishing features, characteristic clinical manifestations, and targeted therapy
• Asthma phenotypes may overlap
• Asthma phenotype (and endotype) classification can contribute to more targeted therapy
• Further research should better elucidate the mechanistic and clinical implications of asthma phenotypes and lead to even more successful personalized therapy